Do season and distribution affect thermal energetics of a hibernating bat endemic to the tropics and subtropics?
نویسندگان
چکیده
Although many tropical and subtropical areas experience pronounced seasonal changes in weather and food availability, few studies have examined and none have compared the thermal physiology and energetics of a hibernating mammal that is restricted to these regions. We quantified thermal energetics of northern long-eared bats (Nyctophilus bifax; body mass ∼10 g) during summer, winter, and spring from a subtropical habitat, and also during winter from a tropical habitat, to determine how N. bifax cope with climate and seasonal changes in weather. We captured bats in the wild and measured metabolic rates via open-flow respirometry. The basal metabolic rate of subtropical bats at an ambient temperature (T(a)) of 32.6 ± 0.7°C was 1.28 ± 0.06 ml O(2)·g(-1)·h(-1) during both summer and winter, similar to other species of Nyctophilus. Resting metabolic rates below the thermoneutral zone increased similarly with decreasing T(a) during all seasons and in both regions. All individuals showed a high proclivity to enter torpor at T(a) values below the thermoneutral zone. Metabolic rates in torpid thermoconforming bats fell with T(a) and body temperature, and mean minimum metabolic rates during torpor were similar during all seasons and in both regions and as predicted from body mass in temperate zone hibernators. At very low T(a), torpid N. bifax thermoregulated, and this threshold T(a) differed significantly between subtropical (T(a) = 3.5 ± 0.3°C) and tropical (T(a) = 6.7 ± 0.7°C) individuals, but not between seasons. Our data show that thermal energetics of N. bifax do not vary seasonally and in many aspects are similar in tropical and subtropical bats; however, torpid individuals from the subtropics allow body temperature to fall to significantly lower values than those from the tropics.
منابع مشابه
Possible Diagnostic Improvement for Cutaneous Leishmaniasis: Is It Achievable?
The parasite, Leishmania, is the causative agent of the disease leishmaniasis and is highly endemic in 98 countries spread across the tropics, subtropics and Mediterranean Basin. It is a vector-borne disease transmitted by the bite of infected sand flies, and it appears in three clinical manifestations namely: cutaneous, mucocutaneous, and visceral leishmaniasis. It is known that at least...
متن کاملBat flies - obligate ectoparasites of bats
Bat flies (Diptera: Hippoboscoidea) are highly specialized ectoparasites and only associate with bats (Mammalia: Chiroptera). They live in the fur and on the wing membranes where they feed on host blood. Bat flies are nominally divided into two cosmopolitan families, Streblidae and Nycteribiidae, but recent phylogenetic studies suggest these are not natural groups (Dittmar et al. 2006). Nycteri...
متن کاملInfluenza Seasonality in the Tropics and Subtropics - When to Vaccinate?
BACKGROUND The timing of the biannual WHO influenza vaccine composition selection and production cycle has been historically directed to the influenza seasonality patterns in the temperate regions of the northern and southern hemispheres. Influenza activity, however, is poorly understood in the tropics with multiple peaks and identifiable year-round activity. The evidence-base needed to take in...
متن کاملThe Physiology and Energetics of Bat Flight
Bats are unique in being the only mammals capable of flight. The mobility, speed, and agility associated with this means of locomotion must have been an important factor in their successful radiation, which has made this diverse group the second largest order of mammals. Excluding man, and possibly rodents, bats have the widest distribution of any terrestrial mammals (Simpson, 1945; Walker, 196...
متن کاملOptimal Reconfiguration of Distribution Network for Power Loss Reduction and Reliability Improvement Using Bat Algorithm
In power systems, reconfiguration is one of the simplest and most low-cost methods to reach many goals such as self-healing, reliability improvement, and power loss reduction, without including any additional components. Regarding the expansion of distribution networks, communications become more complicate and the number of parameters increases, which makes the reconfiguration problem infeasib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 301 2 شماره
صفحات -
تاریخ انتشار 2011